Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.

نویسندگان

  • Hailiang Wang
  • Li-Feng Cui
  • Yuan Yang
  • Hernan Sanchez Casalongue
  • Joshua Tucker Robinson
  • Yongye Liang
  • Yi Cui
  • Hongjie Dai
چکیده

We developed two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn(3)O(4) nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn(3)O(4) nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn(3)O(4) nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn(3)O(4) nanoparticles grown atop. The Mn(3)O(4)/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Mn3O4-Based Aerogels and Their Lithium-Storage Abilities

Mn3O4 aerogels and their graphene nanosheet (GN) composite aerogels were synthesized by a simple supercritical-ethanol process. In the process, supercritical ethanol acted as a reductant to reduce graphene oxide and MnO2 gels simultaneously. The synthesized aerogels consisted of 10-20 nm Mn3O4 nanocrystallites, with BET-specific surface areas around 60 m(2)/g. The performance of the aerogels as...

متن کامل

Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.

Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type ...

متن کامل

Phosphorus‐Graphene Nanosheet Hybrids as Lithium‐Ion Anode with Exceptional High‐Temperature Cycling Stability

A red phosphorus-graphene nanosheet hybrid is reported as an anode material for lithium-ion batteries. Graphene nanosheets form a sea-like, highly electronically conductive matrix, where the island-like phosphorus particles are dispersed. Benefiting from this structure and properties of phosphorus, the hybrid delivers high initial capacity and exhibits promising retention at 60 °C.

متن کامل

A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries.

Sodium-ion batteries have recently attracted significant attention as an alternative to lithium-ion batteries because sodium sources do not present the geopolitical issues that lithium sources might. Although recent reports on cathode materials for sodium-ion batteries have demonstrated performances comparable to their lithium-ion counterparts, the major scientific challenge for a competitive s...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 132 40  شماره 

صفحات  -

تاریخ انتشار 2010